御制数理精蕴

  偃矩以望高
  此用矩测高之法也偃者仰也仰矩方可测高矩之一股植立在前一股定平在下然后比例推之葢平股与立股之比即所知之远与所测之高之比也故仰测之而得高
  覆矩以测深
  此用矩测深之法也覆者俯也俯矩方可测深矩之一股立者在前一股平者在上平股与立股之比即所知之远与所测之深之比也故俯测之而得深
  卧矩以知远
  此用矩测远之法也卧者平也平矩方可测逺以矩之一股为横向内一股为纵向前是以横与纵之比即所知之度与所求之远之比也故平测之而得远
  环矩以为圆
  此用矩为圆之法也以矩之一端为枢一端旋转为圆则成一圜环矩者即旋规之説也
  合矩以为方
  此用矩为方之法也矩二股也两矩相合乃成一方即前方出于矩之説也
  方属地圆属天天圆地方
  前言用矩以测高深广远复用矩以为圆方此以圆方属之天地者非以形体言葢以阴阳动静之理言也乐记云着不息者天也着不动者地也不息故运而不积圆之象也不动故静而有常方之理也且圆之数无尽而方之数有尽天不可阶而升测天者恒于地上度之是仍以方度圆也凡数之不尽者必奇数之可尽者必偶是以阳为奇阴为偶此方圆之理数所以属乎天地也
  方数为典以方出圆
  典则也言圆之数奇零不尽不可为则故惟方数可为典则以方出圆者以方之形度圆之分从方数中生出圆数即前圆出于方之説也如圆径求积则以径自乘之为正方形而以方率圆率比例推之即得圆积是皆以方出圆之理也
  笠以写天天青黑地黄赤天数之为笠也青黑为表丹黄为里以象天地之位
  此即仪象以表天地之形色也笠形圆故以象天写象也青黑天之色黄赤地之色天数之为笠形则以青黑为表丹黄为里以象天地之位葢取天包地之象也
  是故知地者智知天者圣智出于勾勾出于矩夫矩之于数其裁制万物惟所为耳
  天地之高深广远非圣智不能知然圣智非由理之自然亦不能无所凭藉而知也故明勾股之数即可以知地而为智知地之数即可因地以知天而为圣矣故曰智出于勾也然勾股之形又赖矩以成故矩为勾股之本而天地之高深广远皆赖矩以测况万物之大小巨细岂能外于矩之度分乎故矩之于数其裁制万物惟其所为而无不可也
  周公曰善哉
  以周公之圣而与之曰善哉则其得数之本立法之妙可谓至矣至是而周髀之义尽矣


  御制数理精蕴上编卷一
  钦定四库全书
  御制数理精蕴上编卷二
  几何原本一
  几何原本二
  几何原本三
  几何原本四
  几何原本五











  几何原本一
  第一
  凡论数度必始于一点自点引之而为线自线广之而为面自而积之而为体是名三大纲是以有长而无阔者谓之线有长与阔而无厚者谓之面长与阔厚俱全者谓之体惟点无长阔厚薄其间不能容分不可以数度然线之两端即点而线面体皆由此生点虽不入于数实为众数之本
  第二
  线有直曲两种其二线之一端相合一端渐离必成一角二线若俱直者谓之直线角一线直一线曲者谓之不等线角二线俱曲者谓之曲线角
  第三
  凡角之大小皆在于角空之寛狭出角之二线即如规之两股渐渐张去自然开寛是以命角不论线之长短止看角之大小如丙角两线虽长其开股之空狭遂为小角若丁角两线虽短其开股之空寛遂成大角矣
  第四
  凡命角必用三字为记如甲乙丙三角形指甲角则云乙甲丙角指乙角则云甲乙丙角指丙角则云甲丙乙角是也亦有单举一字者则其所举之一字即是所指之角也【如单言甲角乙角丙角之类】
  第五
  凡有一线以此线之一端为枢复以此线之一端为界旋转一周即成一圜如甲乙一线以甲端为枢乙端为界旋转复至乙处即成乙丙丁戊之圜此圜线谓之圜界圜界内所积之面度谓之圜面
  第六
  凡圜界不拘长短其分界之所即为弧线如乙丙丁戊之圜丙至丁丁至戊俱为弧线因其形似弧故名之
  第七
  凡圜自一界过圜心至相对之界画一直线将一圜为两平分则为圜径如乙丙丁戊之圜以甲为心自圜界乙处过甲心至丁或自圜界丙处过甲心至戊画乙甲丁及丙甲戊线皆为圜径也第八
  凡自圜心至圜界作几何线皆谓之辐线其度俱相等因平分全径之半故又谓之半径线
  第九
  凡圜界皆以所对之角而命其弧而角又以所对之弧而命其度葢角度俱在圜界而圜界为角度之规也如乙角为心甲丙为界则乙角相对之界即甲丙弧而甲丙弧即乙角之度也
  第十
  凡角相对之弧得圜界四分之一者此角必直故谓之直角如甲丁丙戊之圜甲乙丙之径自中心乙至圜界丁画一半径将半圜界又分为两平分则成甲乙丁丙乙丁之二角此二角各得圜界四分之一则此二角为直角也若自丁界过乙心至圜界戊处画一直线又成丁乙戊之径复得甲乙戊丙乙戊两相等之直角矣故凡画一直线交于别线其所成之角若直此线谓之垂线葢因平分圜界为四其四弧相对之四角必相等而皆为直角则其二径相交必互为垂线可知矣
  第十一
  凡角相对之弧不足圜界四分之一者谓之鋭角若过四分之一者谓之钝角故自圜径中心复画一辐线而不平分半圜之界则成一鋭角一钝角如甲己丙庚之圜于甲乙丙之径自乙心至甲己丙之半圜界不两平分于丁处画一辐线遂成丙乙丁一鋭角甲乙丁一钝角再将丁乙线引于相对圜界戊处画一丁乙戊径线复成甲乙戊一鋭角丙乙戊一钝角合前二角总为四角矣故凡二角两尖相对谓之对角二角两尖相并谓之并角如甲乙戊丙乙丁二角之两尖相对即谓之对角丙乙戊甲乙丁二角之两尖亦相对故亦谓之对角也如丙乙戊甲乙戊之二角两尖相并而同出一线则谓之并角矣
  第十二
  凡一圜内设两角此一角相对之弧与彼一角相对之弧其限若等则此二角之度亦必相等如甲丁丙戊之圜丙乙丁角相对之丙丁弧甲乙戊角相对之甲戊弧其限相等故丙乙丁角甲乙戊角其度亦相等也
  第十三
  凡有一圜其径线之中心作相并之二角此二角之度必与二直角等如甲丙丁之圜自丁乙丙径线之中心作甲乙丙甲乙丁之相并二角此二角之度必与二直角相等也
  第十四
  凡一直线交于他直线其所成之二角或为二直角或与二直角等如丙乙丁直线上画一甲乙直线至于乙处即成甲乙丙甲乙丁之二直角也又或于丙乙丁直线上画一戊乙直线亦至乙处复成丙乙戊一鋭角丁乙戊一钝角此二角必与二直角相等也再申明之以乙为心丙为界旋转画一圜则丙乙丁线为圜之径线必将圜界平分为两平分矣此丙乙丁径线之中心所画之甲乙线又将半圜界平分为两平分则此二角各相对之弧皆为一圜界四分之一而各为一直角可知矣又如戊乙线将半圜界虽不两平分而成一鋭角一钝角然所成二角仍在丙乙丁径线所限半圜界度为全圜界四分之二故与二直角相等也
  第十五
  凡自一心画为众线其所成之角虽多止与四直角相等如自甲心至乙至丙至丁至戊至已画众辐线虽成众角其各角所函之度必与四直角等葢因甲防为心众辐线皆立一圜之界故众角所对之弧总不越一圜之全度前言一圜之界仅有四直角之弧线兹角虽多亦未尝出一圜之界故曰众角虽多止与四直角等也
  第十六
  凡两直线相交所成二对角之度必俱相等如甲乙丙丁二线交于戊处成甲戊丁丙戊乙之二对角斯二角之度必俱相等今以二线相交之处为心旋转画一全圜则甲乙丙丁二线俱为此圜之径线矣惟其俱为径线故将一圜为两平分而甲戊乙之径线为甲丙乙之半圜界丙戊丁之径线为丙甲丁之半圜界因两半圜界俱系全圜径线故相交成对角其度必等兹将甲丙乙之半圜界减去甲丙弧即余丙乙弧丙甲丁之半圜界亦减去丙甲弧又余甲丁弧凡两相等之弧减去一段相等之弧所余之弧必相等今甲丙乙丙甲丁二半圜之界内减去甲丙丙甲同体之弧则所余丙乙甲丁相对之弧亦必相等矣此二弧之度既俱相等则所对之甲戊丁丙戊乙二角之度亦必相等可知矣其余甲戊丙丁戊乙亦与甲戊丁丙戊乙同理故其所对之角度亦必相等也第十七
  凡大小圜界俱定为三百六十度而一度定为六十分一分定为六十秒一秒定为六十防一防定为六十纤夫圜界定为三百六十度者取其数无竒零便于布算即徴之经传亦皆符合也【易曰凡三百有六十当期之日邵子曰三百六十中分之得一百八十为二至二分相去之数】度下皆以六十起数者以三百六十乃六六所成以六十度之可得整数也凡有度之圜界可度角分之大小如甲乙丙角欲求其度则以有度之圜心置于乙角察乙丙乙甲之相离可以容圜界之几度如容九十度即是甲乙丙直角【何以知为直角因九十度为全圜三百六十度之四分之一前言凡角得圜界四分之一者为直角故知其为直角也】若过九十度者为丁乙丙钝角不足九十度者为丙乙戊鋭角观此三角之度其余可类推矣第十八
  凡二线之间寛狭相离之分俱等则此二线谓之平行线也
  第十九
  欲求平行线之间相距几何则自上一线不拘何处至下一线画二纵线则此二线为相距度分也如甲乙丙丁二线平行自上线甲乙二处至下线丙丁二处画二纵线则此二线为相等线其度必等然则甲乙丙丁相对之间其相距之远近不已见耶
  第二十
  平行二线虽引至于无穷其端必不能相合葢二线相离之度各处逺近俱为相等故也如甲乙丙丁平行二线随意引于戊己又自戊至己画一纵线其度亦等于甲丙乙丁二纵线故曰平行线虽引至于无穷其端终不能相合也第二十一
  凡平行二线或纵或斜画一直线交加于上则平行线上所成之二角必俱相等如甲乙丙丁二平行线上画一庚辛斜线其甲乙线之庚戊乙角丙丁线之戊己丁角皆相等假使庚戊乙角大于戊己丁角则戊乙线必离于庚戊线而向丙丁线甲乙丙丁二线不平行矣若甲乙丙丁二线毫无偏斜又得庚辛直线相交成二角则此二角必然相等矣第二十二
  凡平行二线上画一斜线则成八角此八角度有相等者必是对角或内外角如庚戊乙甲戊己一角其度相等因其两尖相对谓之对角庚戊乙戊己丁二角其度亦相等因其在平行二线之内外故谓之内外角甲戊己戊己丁二角其度亦相等因其俱在平行二线之内而立斜线之左右故又谓之相对错角又如甲戊庚度戊乙二角其度不等因其立一线之界谓之并角庚戊甲丁己辛二角其度亦相等因其俱在平行二线之外故谓之外角乙戊己丙己戊二角其度亦相等因其又俱在平行二线之内故又谓之内角总之二平行线上交以斜线所成八角必两两相等也第二十三
  平行线上一边之二内角或一边之二外角与二直角相等如丁己戊角与丙己戊角为并角则此二并角与二直角等前第十四节云凡一直线交于他直线所成二角必与二直角相等则此二角同出于一直线为并角故亦与二直角等矣又如甲戊庚庚戊乙虽为外角而亦为并角此二并角亦与二直角等也他如甲戊己乙戊己二并角丙己辛丁己辛二并角亦与二直角等也第二十四
  有平行二线复与一线相平行者此三线互相为平行线也如甲乙丙丁二线之间有戊己线与之平行则甲乙丙丁戊己三线互相为平行线也照前第二十一节在此三线上画一庚辛壬斜线则所成之庚辛二角必相等而辛壬二角亦必等也三线之与斜线相交所成之角既各相等则三线互为平行可知矣




  几何原本二
  第一
  凡各种界所成俱谓之形其直界所成者为直界形曲界所成者为曲界形凡直界所成各形未有少于三角形界者故三角形为诸形之首
  第二
  凡三角形一角直者为直角三角形一角钝者为钝角三角形三角俱鋭者为鋭角三角形
  第三
  凡三角形其三边线度等者为等边三角形两边线度等者为两等边三角形三边线度俱不等者为不等边三角形第四
  凡三角形之三角度相并必与二直角度等如甲乙丙三角形自乙角与甲丙线平行画一乙丁线则成丙乙丁角与丙角为二尖交错之二角其度必相等【见首卷第二十二节】而甲角与甲乙丁角为甲丙乙丁二平行线内一边之二内角与二直角等【见首卷第二十三节】今于甲乙丁直角内减丙乙丁角所余为甲乙丙角丙乙丁角既与丙角度等则甲乙丙丙乙丁合成之一直角与甲角之一直角非二直角之度耶
  第五
  凡三角形自一界线引长成一外角此外角度与三角形内所有之二鋭角等如甲乙丙三角形自甲乙线引长至丁所成之丙乙丁角即为外角其度与三角形内甲丙二鋭角之度等葢甲乙丙三角形之三角度并之原与二直角等【如本卷第四节云】而甲丁直线与丙乙直线相交所成之甲乙丙丁乙丙内外角亦与二直角等【如首卷第十四节云】则此内外二角所并之度与三 形内三角所并之度亦必相等今于内外角所并之二直角内减去甲乙丙角则所余之丙乙丁一外角度与甲角丙角所并之度为相等可知矣
  第六
  凡两三角形其两边线之度相等二线所合之角又等则二形底线之度必等二形之式亦等其底线之二角亦皆等也如甲乙丙一三角形丁戊己一三角形此二形之甲角丁角若等甲丙丁戊二线甲乙丁己二线又互相等则乙丙戊己之二底线必等其二形之三角式亦必等而乙角己角相等丙角戊角亦相等若将二形之甲角丁角相合则甲丙丁戊二线甲乙丁己二线各度必等因其俱等故丙乙线之二角与戊己线之二角俱恰相符而无偏侧矣若谓乙丙底与戊己底不符必是戊己线上斜于庚或下斜于辛不成直线形矣第七
  两三角形其三边线之度若等则三角之度亦必相等而此形内所函之分亦俱等也如甲乙丙丁戊己两三角形之甲乙线丁戊线甲丙线丁己线乙丙线戊己线两两相等则甲角与丁角乙角与戊角丙角与己角必各相等而甲乙丙三界所函之分丁戊己三界所函之分亦俱相等葢因此两三角形之各线俱恰相符故所函之分亦俱恰相符也第八