天经或问前集

  南北极
  问天学家云南北二极是相对也又曰北极出地南极入地则是低昂矣是低昂乎相对乎
  曰南北极者天体永久不动之两防周天倚为环转之枢者也故名为极【防燕曰极如轮之毂如磨之脐非星也云极星者葢指其近极之星而名耳】而居中有不转之地以为之心故南北有不转之极以为之枢太虚空洞固有不转之神化以为之主而后此天得以循行万古而不越也李振之【名之藻】曰测从极中周围起线为南北纬度至天之中九十度为赤道界人居赤道之下者以赤道为天顶居二极之下者以二极为天顶极之低昻因人所居而定也从极中分瓣起线为十二宫从宫内分密线为东西经度合至中天则为赤道经度【此皆测法而定】太阳躔黄道行度虽极南极北止离赤道二十三度半也故南北二极之规天轮横绕黄道之所不至昼夜永短偏胜之极二规之内天地之气甚寒周围皆有日影而以半年为昼半年为夜矣
  子午规
  问浑天以赤道为中分以南北二极为子午又以天顶为午地下为子则是以赤道为子午何也
  曰南北二极处为正子午是也然天之子午亦南北极之子午天之子午但取中分南北极处过顶之线为名从诸曜升降适中之界而设也太阳一日绕天一周见于东方渐升天顶为午中此地平以上东半昼分谓之升过天顶向西渐低地平是为西半昼分谓之降他曜皆然于此升降之中界设一规为子午规也诸曜际此谓之在子在午也【黄道十二宫之子午以列宿分度而定天之子午以人所居之地而立也】此规透过赤道及地平与二极其偕赤道地平而交为直角也恒然不动但人在地面上南北迁此规惟一东西迁此规随在各异也极之子午即地之子午静而有定此有定之子午发线去随太阳到天顶而转故天之子午动而不居也【防熈曰日行周天子午亦随而周天是以人所居之天顶而定也余支亦皆然】设此规其用有五一以分半昼半夜时刻一以寻列宿极髙过顶之度当此之谓中星一以此规计日凡毎日自子半起正当此规之下一以捡夜半中星以定太阳正宿一以分周天之度亦可縁太阳以求赤道缘赤道以求北极
  地平规
  问子午规者中分南北极过天顶之线为名从诸曜升降适中之界而设也地平规者则何説也
  曰地平规者平分天地之半从人足所附极目四望之界而设也人附地面所可望见者天之半耳其半恒绕于地下人不可而见也即此可见不可见之界而诸曜由是而出入明暗昼夜由是而分因定此规剖为四象以应四方象各限以九十度是为地平经度可以定北极赤道离地之度可以定星辰出入之分及何星常见不伏何星常伏不见可以定七曜列宿同出同入之度及先后出入之度可以定太阳各曜所出地离赤道几何纬度可以辩各曜出入之方位可以算各曜渐升之度自一度上至九十度皆可知得而稽也
  问诸规必须为象方可知之理虽剖晰终属茫然
  曰黄赤道南北极子午地平者不过相形酌理设其象为依据如不知此欲知诸曜之行则茫然无措故欲知象先明此为首如此理不谙虽登台转象亦茫然耳
  太阳
  问诸曜森罗太阳其宗也何不居诸天之上反居列宿之下七曜错行太阳甚正也何节有舒缩日有永短也
  曰太阳者黄帝经曰天凝其阳精为日而月与星用之万物皆用之故居天之中适得上下照映暄及下地能济万物故称星月之宗【黄帝经曰天明则日月不明潜草曰两间之光皆太阳之火也文饶曰两间变状皆气光之所为】若居最上则温暖不及诸物难以滋生若居最下则燥热太甚诸物受其暵损故日得中和之理万物之宜也所以一日循黄道一周使万物得阴阳之育和而周天日恒过太阳一度使南北而有寒暑之候【俞子曰太阳日行黄道一周天则有昼夜万物得以滋生周天过日一度一嵗则能踵黄道南北节气故有寒暑】行黄道积嵗平分之数以天度计一日为五十九分八秒有竒【是一度以六十分算者】所谓平行度分是也然平行为齐实行则非齐也有冬盈而夏缩矣所以然者葢缘日天心不同宗动天心与地之心则日行距地逺近不等距近则行疾疾则所行之度过于平行而为盈毎冬月一日计行一度一分有竒以较平行则盈二分矣【防熊曰平行周天度也实行太阳度也因太阳天心不同宗动天心故有平行实行之度相较而有盈缩矣】故冬一节气为十四日八十四刻有竒距逺则行迟迟则所行之度不及平行而为缩毎夏月一日计行五十七分有竒以较平行则缩二分矣故夏一节气为十五日七十二刻有竒总由夏行北陆冬行南陆则有盈缩之差也【揭子曰春分至秋分合一百九十日七时四刻毎十日应缩四十三分六厘共缩八度二十五分秋分至春分合一百七十四日七时四刻毎十日应伸四十七分四厘共伸八度二十五分】而逐日测之则太阳实躔宫度分秒逐日有盈缩如太阳从春分底立夏行黄道四十五度则厯四十六日十刻十分原谓之空度从立秋至秋分亦行黄道四十五度而所厯则四十六日三十八刻十分原谓之共度是逐日刻数不等所谓春行盈秋行缩也【俞子曰近嵗宻测而知太阳与宗动不同心故知节气有盈缩原惟平分十五日二时四刻作一节气而不知春有盈而秋有缩也】故定盈缩之界非在二至之防【元算在此】乃在二至之后六度此二防为盈末缩初今盈为最髙之防缩为最卑之防因定此二防遂晰太阳之行为一不同心规也其行迟者在最髙之防行疾者在最高之冲【即最卑之防】此最高本行亦犹太阴之按月孛如太阳之心并二极与宗动天同则日行转常在赤道之圏絶无距度安得有东西运行之异乃知气不叅差无以成化时不寒暑无以合序物不错综无以生文也
  太阴
  问太阴之行不随黄道之一线又不踵黄道之节气要自疾行一周又步与日防为合朔然太阳之光为世界之切须太阴虽有清光亦无恒照何行反较难于太阳乎
  曰日之升也布光于色象阐景于山川日之没也诸曜则受光地面则幽暗太阴之体最近于地受日之照反映于下使夜之幽暗者时受清辉焉故与日为敌而运行叅错不一推步筹算倍艰皆为交食故茍或分杪乖违交食岂能密合故必细审其行度然后可立法致用也葢太阴不循黄道一线自行一月游轮径约十二度出入黄道内外相距逺者各六度其轮交黄道如一小环系于黄道带行焉其本旋之外有平行一日十三度有竒但此行之界有四一界是从某宫次度分起算此界定而不动二界为本天之最高此非定界毎日自顺天右行七分有竒是月距本天最高一日之行为十三度三分有竒故其平行二十七日三十刻有竒为一周己复于宫次元度又必再行二十三刻有竒为二十七日五十三刻始能及于本天之最高今谓之月自行元谓之转周满一周谓之转终其最高则行八年有竒而周天谓之月孛【月孛是月行极高极逺之防后人谓之月孛星】三界为黄白二道相交之所谓之正交中交此界亦自有行乃逆行也毎日三分有竒则月平行距正交一日为十三度十三分有竒至二十七日二十七刻减交行之一度二十三分得二十七日十五刻有竒月乃囘于元界谓之交终四界是与太阳去离太阳一日约行一度则太阴距太阳迟为十二度十分有竒至二十九日五十三刻有竒遂及太阳复与之防谓之朔防古谓月行九道是月防轮出入黄道内外算也自内出外为阳厯口世谓之罗防又名龙首自外出内为阴厯口世谓之计都又名龙尾【防熈曰罗防计都乃黄赤道左右之内外相交出入之名后人以为火土之余星】乃白道正交行及四正阴阳二厯各异名之为八道并黄道为九也实一道也月行十八年余而徧九道【游燕曰九道乃近日逺日而名月行黄道东为青道行南为朱道行北曰黒道行西曰白道各分内外为八道并黄道为九也十九年内月行九道完而复起所以算日月食惟在十九年内推测度分畧同而时刻稍易皆各有定则】其白道两交黄道论最逺之距为五度今测朔望外相距皆过五度上下二则为五度十七分三十秒也推知二道相交之角非定而不动约其广狭之行常以十五日为限也
  日食
  问日为诸阳之主永无亏损何得有食
  曰日为诸阳之宗星月皆借光焉而日所行在月天之上月所行在日天之下朔日日与月相遇两周相切【两周者日周天月周天也】与南北同经东西同纬则月受日之光于上月体隔日之光于下是日月相值则蔽而不见然日与月虽则相叠而上下相离数百万里其相值也特相荡而过自人在地面上仰视之则见其月掩日于是日若无光然实未常失光也人不见其光故谓之食若日食非月掩则食无常何定在朔而不前后也而食时天上度分唯一处人居圆地则食分随东西南北人见无有同者厯家不明各方经纬之度【游熈曰天有经纬之度地亦有经纬两合之测则不甚差】则无以知幅相距之数而交食时刻与分数行之一方不能通之各方耳如从西面东地隔七千五百里者则东人先八刻见食设若地平形则天下人见食共在一时无有先后也若南北经纬之度距过三十四分者则月从邉行人不见其掩则无食矣
  问月食宋儒云火日外影中心实暗到望时却当其中暗处谓之闇虚以闇虚之象为月食是否
  曰天圆形地梗在中心如鸡子黄处青之内青之周围即列宿七曜之天也日一日行一度月一日行十三度余以周天三百六十度记之自朔至望仅行一半月距日一百八十度而日月正对望中间地球障隔月轮在地影之上月轮在地球之下日光不能照之故失其光而谓之食渐出地影之外日能照之则渐复元光因知月轮失光为食食悉由于地影之蔽入此影中安得不食而半进半食全进全食是食必在望其食之处定在龙头龙尾【游燕曰即黄白二道相交之所则经纬同故有食】十三度三分度之一过此则月之行道不相涉而地影不能障也龙头龙尾者是日躔之两界月食所经之处也然食之时地影从人之下蔽上去故天下皆同【防熈曰见月食必在夜而人在地影中立故天下皆同】凡地面见者大小迟速亦同唯居子午线不同则时刻亦不同大抵十九年所躔宫度同而食之时刻浅深亦不同而土木垣宿不及食者影斜而鋭不相透也日行天一周则影亦行天一周月当其影处即食而食之处迄无定所
  交食
  问日食月掩也月食地影蔽也然掩蔽俱是无光则食皆同又云月食皆同日食不同因地影也圎也请详其説
  曰日月之行二十九日有竒而东西同度谓之合朔而月魄隔日光于下而不偏斜谓之日食【俞大刚曰合朔则月月初一皆合合而不食者因月行九道与日度有偏斜则从边而过故合朔而不食】月距日一百八十度正与之冲谓之望若当冲时必入地影而地居中间日光为地所阻不能射照月体月失其光谓之月食而食常在黄白道相交之所谓之正交中交凡日月行及二交为同度同度则有食而食必凖在限交在限内则食交在限外则不食日食之限与月食之限亦异故推月食越五月能再食越七月不能再食日食越五月能再食越七月亦能再食所以为限各异也至于食分则以距度求之葢两周之心相距之度也在月食则为太阴之心实距地影之心愈近食分愈多【新语曰夫以火照物对冲必得黒影地之居中也日照于东黒影冲西日照于下黒影冲上物过黒影即黒而不见故日月正对地隔于中则影射而月黒而食有浅深月之道有浮沉也】在日食则为日月两心以视度相距其逺近不依实度而依人目视之所及为凖此即月食分天下皆同而日食分随人目东西南北各异也如白道向南极半周有时在天顶及黄道之中谓之阴厯白道向北极半周是时在黄道外谓之阳厯故其下日食之限莫得而定也比如京师北极出地四十度约算阳厯八度阴厯有二十一度则知日月相防凡在阳厯近二交八度在阴厯近二交二十一度其下必见日食过此限以往则否也即北可以推南莫不以逺近多寡定食之验然二厯食限之度有异者其故在月轮月轮最近于地又小于地人见之所在地面非在地心以月天论地平虽天与地球皆为平分直过其心而人在地面髙所以视天地之两界则地球与月天非平分也而少半在上太半在下约差一度以本法推算月己出正地平于人所视之地平尚少一度此谓之视差惟月在天顶正地平与地平之极皆以一直线合于天顶无有视差过此左右不免有差愈逺天顶愈近地平其差愈甚夫视无他常降下月体数十分耳假令日月同度同在近交之南又因同度并在地平上高二十度则日于视地平为十九度五十八分祗降二分月于视地平为十九度直降一度以日月二差之较为五十八分矣若日月同高共度而人视之月常下于日一度耳不掩日光则不食若日月在地平上高七十度则日无视差月视差止二十分其降于日亦止二十分势必相切或至掩数分而成食若日月在交北又当以月算在日之上庶因视差所降而掩日光以为食矣顾此二地平之差又分二焉一加减交食分数谓之气差一加减时刻谓之时差此测交食之艰也
  朔望晦
  问月若圆形受日之光朔日月掩日为食望日地影蔽为食月不掩日地影不蔽时宜月体之光俱圆何过朔则渐盈过望则渐亏至上下而盈亏各半疑其月体是活物能自发光固能晦能满能消能长也
  曰天体如玻瓈月与星即玻瓈中之坚凝圆物也而圆者坚凝则不能透光太阳之火充满全天天体直透者不能发光星月坚凝者则耀日之光而返照焉故日光照及其体则明不及则暗如月自有光则近日逺日其光恒一絶无消长也朔日日月同度月正居日之下日光照其向上之面不照其向下之面人居地上独能见其无光之下面不能见其有光之上面故朔之日视月全无光过朔月则东行而渐离于日而日在西月光渐盈距日至九十度日照其下侧半面人居地上独能见其下侧半面为上距日一百八十度则日月正对月之圆体受日之光全满为望也过望月则虽东行却是渐离在西日反在东月光渐亏距日至九十度日照月上侧半面为下下以后月光渐消至于无光为晦焉
  气盈朔虚闰余
  问气既踵节矣因何有盈朔有常数矣因何有虚又因盈虚而后置闰如盈虚不设闰亦不必置也于数更易何如