测圆海镜分类释术

  后凡言带一廉以二廉益从减从翻法开三乘方法者俱仿此
  甲乙二人同出北门行至东北隅艮地分路乙往南行一百五十步而立甲又东行连前共二百步望乙与城相叅直问城径
  释曰此底勾小差股立法测望甲前后共东行底勾也乙往南行小差股也
  术曰二行相乘又以乙南行乘之得四百五十万为实二行相减以乘乙南行得七千五百二行相乘得三万 二数相并得三万七千五百为法实如法而一得半径
  又曰二行相乘得三万为实 倍底勾减小差股余二百五十为法
  乙出东门南行三十步而立甲出北门东行二百步望乙与城相叅直问城径
  释曰此底勾□股立法测望乙出东门南行□股也甲出北门东行底勾也
  术曰二行相乘得六千为平实 相减得一百七十为从方作减从翻法开平方法除之得半径
  减从翻法开平方法见二卷
  又曰乙南行自之得九百为□股筭以乘东行得一十八万为立实 □股筭为从方 东行内减二之乙南行余一百四十为益廉作带从减益廉翻法开立方法除之得半径
  带从减益廉翻法开立方曰置所得积一十八万以从方廉约之 初商一百 置一于左上为法置一乘从廉得一万四千置一自之得一万为
  隅法带从方共一万 九百以减益廉余三千一百为下法与上法相乘除实二十一万实不满法反减实一十八万余一十三万为负积 倍益廉得二万八千三因隅法得三万为方法 三因初商得三百为廉法 约次商得二十 置一于左次为上法 置一乘益廉得二千八百并入倍益廉得三万○八百 置一乘廉法得六千置一自之得四百为隅法并方从方廉隅共三万七千三百反减益廉三万○八百余六千五百为下法与上法相乘除实尽
  后凡言带从减廉翻法开立方法者仿此
  大差勾与别股测望三
  甲乙二人俱在城西门南行至西南坤隅分路乙往东行一百九十二步而立甲复南行计前后共四百八十步望乙与城相叅直问城径
  释曰此大差勾与边股立法测望乙自坤隅东行大差勾也甲自西门往南共行边股也
  术曰二行相乘得九万二千一百六十 又以乙东行乘之得一千七百六十九万四千七百二十为实二行相减余二百八十八亦以东行乘之得五万
  五千二百九十六 加二行相乘之数共一十四万七千四百五十六为法实如法而一得半径
  又曰二行相乘为实 倍甲南行减乙东行余为法
  甲从城外西南坤隅东行一百九十二步乙从东北艮隅南行一百五十步望甲与城相叅直问城径释曰此大差勾与小差股立法测望甲东行大差勾也乙南行小差股也【与小差勾大差股同】
  术曰二行相乘倍之即全径筭
  小差勾与别股立法测望四
  乙从城外东北艮隅东行八十步甲从城外西北干隅南行六百步见之问城径
  释曰此小差勾与通股立法测望乙从艮隅东行小差勾也甲从干隅南行通股也【与通勾大差股同法】
  术曰二行相乘倍之得九万六千为实 二之东行得一百六十为从 作带从开平方法除之得半径带从开平方法见一卷
  乙从城外东北艮隅往东行八十步甲出西门南行四百八十步见之问城径
  释曰此小差勾与边股立法测望乙东行小差勾也甲南行边股也
  术曰二行相乘倍之得七万六千八百为实以乙东行为从作带从开平方法除之得全径
  带从开平方法见一卷
  乙从艮隅东行八十步而立甲从城外西南坤隅南行三百六十步见之问城径
  释曰此以小差勾大差股立法测望乙东行小差勾也甲南行大差股也
  术曰二行相乘倍之即圆径筭
  明勾与别股测望五
  乙出南门东行七十二步而立甲从城外西北干隅南行六百步望乙与城相叅直问城径
  释曰此明勾通股立法测望乙出南门东行明勾也甲从干隅南行为通股
  术曰二行相乘得四万三千二百为实 以甲南行六百为从方 二为隅法作负隅减从开平方法除之得半径
  负隅减从开平方法见二卷
  乙出南门东行七十二步而立甲出西门南行四百八十步望乙与城相叅直问城径
  释曰此明勾边股立法测望乙东行明勾也甲南行边股也
  术曰乙东行自之得五千一百八十四为明勾筭以南行乘之得二百四十八万八千三百二十为立方实 明勾筭为从 南行内减二东行余三百三十六为益廉 作带从减廉开立方法除之得半径带从减廉开立方曰置所得立方实以从方从廉约之 初商一百 置一于左上为法 置一乘益廉得三万三千六百 置一自之得一万为隅法带从方共一万五千一百八十四 以减益廉余一万八千四百一十六为下法与上法相乘
  除实一百八十四万一千六百余实六十四万六千七百二十为次商之实 倍益廉得六万七千二百 三因隅法得三万为方法 三因初商得三百为廉法 约次商得二十 置一于左上为法 置一乘益廉得六千七百二十加入前倍廉共七万三千九百二十 置一乘廉法得六千置一自之得四百为隅法并方法从方廉隅共四万一千五百八十四以减益廉余三万二千三百三十六为下法与上法相乘除实尽
  后凡言带从减廉开立方法者俱仿此
  又曰明勾边股相乘得三万四千五百六十为实明勾边股相减余四百○八为从方 一虚法作减从开平方除之尤捷
  甲出南门东行七十二步而立乙出东门南行三十步望乙与城相叅直问城径
  释曰此明勾□股立法测望甲出南门东行明勾也乙出东门南行□股也
  术曰二行相乘得二千一百六十为实 相并得一百○二为从 作以从减法开平方除之得半径以从减法翻法开平方曰置实于左从于右 约初商得一百 置一于左上为法 置一为隅法以从减隅隅不及减从内翻减隅一百余二为负从以负从为下法与上法相乘得二百 反増入实内共二千三百六十四为次商之实 倍隅法得二百为廉法 约次商得二十 置一于左次为上法 置一为隅法并廉隅共二百二十 以从减之余一百一十八为下法与上法相乘除实尽
  后凡如此类者俱仿此通变随宜
  又术二行相并得一百○二为太虚相减余四十二即太虚勾股较 倍筭减较筭余一万九千○四十四平方开之得一百三十八为太虚勾股和 加较半之为股减较半之为勾 以太虚勾股求圆径又曰二行相乘倍为实 相减余为从 作带从开平方法除之得虚勾二行相并即虚以勾求股以得圆径
  □勾与别股立法测望四
  乙出东门直行一十六步甲从城外西北干隅南行六百步见之问城径
  释曰此以□勾通股立法测望乙出东门直行□勾也甲从干隅南行通股也
  术曰甲南行自之又以乙东行一十六乘之得五百七十六万为立方实 倍东行以乘南行得一万九千二百为从方 二为隅作带从负隅开立方法除之得半径
  带从负隅开立方法见前通勾明股
  乙出东门直行一十六步甲出西门南行四百八十步见之问城径
  释曰此□勾边股立法测望乙出东门直行□勾也甲出西门南行边股也
  术曰二行相乘得七千六百八十又以南行乘之得三百六十八万六千四百又四之得一千四百七十四万五千六百为立方实 以东行一十六步为从廉作带从廉开立方法除之得全径
  带从廉开立方法见前底勾明股条
  圆城不知周径南门外一百三十五步有树出东门直行一十六步见之问城径
  释曰此□勾明股立法测望出东门外一十六步为□勾城东之余勾也树在城南一百三十五步为明股城南之余股也以余勾余股测城径
  术曰余勾余股相乘为勾乘股筭自之得四百六十六万五千六百为三乘方实 勾乘股筭倍之得四千三百二十又以余勾余股并乘之得六十五万二千三百二十为从方 余勾余股相并自之得二万二千八百○一余勾余股相减自之得一万四千一百六十二数相减余八千六百四十为益廉 作带从廉添积开三乘方法除之得半径
  带从益廉添积开三乘方曰置所得三乘方积以从方廉约之初商一百 置一于左上为法 置一乘从益廉得八十六万四千并从方共一百五十一万六千三百二十为益积之法与上法相乘得一亿五千一百六十三万二千为益实添入原积共一亿五千六百二十九万七千六百为通实置一自乘再乘得一百万为隅法与上法相乘
  除实一亿余五千六百二十九万七千六百为次实 二因益廉得一百七十二万八千 四因隅法得四百万为方法 初商自之 六因得六万为上廉 初商四之得四百为下廉 约次商得二十置一于左次为上法 置一乘益廉得一十七万二千八百并前倍廉共一百九十○万○八百 并从方共二百五十五万三千一百二十为益积之法与上法相乘得五千一百○六万二千四百为益实添入次实共一亿○七百三十六万为通实置一乘上廉得一百二十万 置一自之以乘下廉得一十六万置一自乘再乘得八千为隅法并方廉隅共五百三十六万八千为下法与上法相乘除实尽
  又为带从方廉减隅翻法开三乘方
  其法曰初商一百 置一于左上为法 置一自乘再乘得一百万为隅法 置一乘从廉得八十六万四千并从方共一百五十一万六千三百二十以减隅法不及反减隅法一百余五十一万六千三百二十为负隅与上法相乘得五千一百六十三万二千加原实共五千六百二十九万七千六百为次商之实 四因隅法得四百万为方法初商自之六因得六万为上廉 初商四之得
  四百为下廉 次商二十置一于左次为上法置一乘上廉得一百二十万置一自之以乘下廉得一十六万 置一自乘再乘得八千为隅法并方法廉隅共五百三十六万八千为通隅 倍初商加次商得二百二十以乘从廉得一百九十○万○八百并从方共二百五十五万三千一百二十以减通隅余二百八十一万四千八百八十为下法与上法相乘除实尽
  后凡言如此类立法者仿此
  又术曰以树去南门步自之得一万八千二百二十五为余股筭副置二位一以余股乘之得二百四十六万○三百七十五为余股立筭一以余勾乘之得二十九万一千六百为勾乘股立筭相乘得七千一百七十四亿四千五百三十五万为三乘方实 余勾余股相乘得二千一百六十为勾股相乘筭倍之以乘余股立筭得一百○六亿二千八百八十二万为从方 余勾自之得二百五十六为余勾筭四之以乘余股得一十三万八千二百四十 倍勾乘股立筭得五十八万三千二百 二数相减余四十四万四千九百六十为从二减廉 以勾股相乘筭为隅筭 作从廉减从方负隅开三乘方法除之得八十一为明勾较以除明股筭得二百二十五为明勾和 加较半之为减较半之为勾 勾股相乘倍为实 以较除之得通和较通和较即城径也
  从防减从方负隅开三乘方曰约初商八十置一于左上为法 置一自之以乘从廉得二十八亿四千七百七十四万四千以减从方余七十七亿八千一百○七万六千 置一自乘再乘得五十一万二千以隅筭因之得一十一亿○五百九十二万为隅法 并从方共八十八亿八千六百九十九万六千为下法与上法相乘除实七千一百○九亿五千九百六十八万余实六十四亿八千五百六十七万为次实 四因隅法得四十四亿二千三百六十八万为方法 初商自之六因又以隅因得八千二百九十四万四千为上廉 初商四之隅因得六十九万一千二百为下廉 约次商得一 置一于左次为上法 倍初商加次商得一百六十一又并初次商为八十一乘之得一万三千○四十一以乘从廉得五十八亿○二百七十二万三千三百六十以减余从余一十九亿七千八百三十五万二千六百四十为从方 置一乘上廉 置一自之以乘下廉俱如旧 置一自乘再乘仍得一为隅法并方法从方廉隅共六十四亿八千五百六十七万为下法与上法相乘除实尽















  测圆海镜分类释术卷三
  钦定四库全书
  测圆海镜分类释术卷四
  元 李 冶 撰
  明 顾应祥 释术
  通勾与别测望一
  圆城南门之南有树甲从城外西北干隅东行三百二十步乙出西门南行望树及甲与城相叅直乃斜行二百五十五步至树下问城径
  释曰此以通勾上高立法测望甲东行通勾也乙斜行乃天之日上高也乙从西门南行四百八十步为边股树在南门外一百三十五步为明股术曰二行相乘又以半甲东行乘之得一千三百○五万六千为立方实 二行相乘得八万一千六百半甲东行乘甲东行得五万一千二百相并得一十三万二千八百为益从甲东行三百二十为减从廉减从开立方法除之得半径
  带从以廉减从开立方曰布实于左从于右别置减从廉 约初商得一百 置一于左上为法置一乘从廉得三万二千 以减从方余一十○○八百置一自之得一万并余从共一十一万○八百为下法与上法相乘除实一千一百○八万余一百九十七万六千 倍减廉得六万四千三因隅法得三万为方法 三因初商得三百为廉法 约次商得二十 置一于左次为上法置一乘减廉得六千四百并倍廉共七万○四百以减原从余六万二千四百 置一乘廉法得六千置一自之得四百为隅法并方廉隅共三万六千四百带余从共九万八千八百为下法与上法相乘除实尽得半径一百二十
  后凡言带从以廉减从开立方法者仿此
  甲从城外西北干隅东行三百二十步而立乙出南门直行不知步数望见甲与城相叅直遂斜行四百二十五步与乙相防问城径
  释曰此以通勾底立法测望甲东行通勾也乙自南门外斜行就甲为底乃日之地也
  术曰二行相减余一百○五为通勾底差以乘通勾得三万三千六百 又以半通勾乘之得五百三十七万六千为立方实 半通勾乘通勾得五万一千二百与差乘通勾之数相减余一万七千六百为从方 倍东行得六百四十步为益廉作带从减益廉开立方法除之
  带从减益廉开立方法见三卷【明勾边股下】