- 首页
- 子藏
- 算法
- 御制历象考成
御制历象考成
岁差
岁差者太阳每岁与恒星相距之分也如今年冬至太阳躔某宿度至明年冬至时不能复躔原宿度而有不及之分但其差甚微古人初未之觉至晋虞喜始知之因立岁差法厯代治厯者宗焉而所定之数各家不同喜以五十年差一度刘宋何承天以百年差一度祖冲之以四十五年差一度隋刘焯以七十五年差一度唐傅仁均以五十五年差一度僧一行以八十二年差一度惟宋杨忠辅以六十七年差一度以周天三百六十度每度六十分每分六十秒约之得每年差五十二秒半元郭守敬因之较诸家为密今新法实测晷影验之中星得七十年有余而差一度每年差五十一秒此所差之数在古法为冬至西移之度新法为恒星东行之度征之天象恒星原有动移则新法之理长也【详恒星厯理】
御制厯象考成上编卷一
钦定四库全书
御制厯象考成上编卷二
弧三角形上
弧三角形总论
弧三角形纲领
弧三角形凡例
正弧三角形论
正弧三角形图说
正弧三角形八线勾股比例图说
正弧三角形用次形图说
正弧三角形边角相求法
正弧三角形设例七则
弧三角形总论
弧三角形者球面弧线所成也古厯家有黄赤相准之率大约就浑仪度之仅得大概未能形诸算术惟元郭守敬以弧矢命算黄赤相求始有定率视古为密但其法用三乘方取数甚难自西人利玛窦汤若望等翻译厯书始有曲线三角形之法三弧度相交成三角形其三弧三角各有相应之八线弧与弧相交即线与线相遇而勾股比例生焉于是乎有黄道可以知赤道有赤道可以知黄道有经可以知纬有纬可以知经厯象之法至此而备勾股之用至此而极矣
弧三角形纲领
凡弧三角形皆在球面球面之腰围一线谓之大圈如甲乙丙丁为子午规戊己为赤道庚辛为黄道壬乙癸丁为地平规如此之类皆为大圈其周度皆相等故可以相为比例凡圈皆有极极距圈皆九十度如赤道则有南北极黄道则有黄极若圈不相等则为距等圈如子丑二圈其四围之距大圈皆相等而与大圈平行虽亦为三百六十度其分则小于大圈距大圈愈逺距极愈近则其圈愈小至极一防而止不能与大圈为比例故弧三角形之角度边度皆大圈之度也
凡两弧相交所成角相距皆半周一百八十度名其角度则必取其两弧各足象限九十度其对角之弧即为本角之度如甲乙丙丁为黄道甲戊丙己为赤道甲丙二处相交相距各半周一百八十度即如春秋分试于甲丙弧之各平分九十度处作丁己乙戊垂弧【凡言垂弧皆曲线画图于平面不能显出故作虚线以别之】则丁己弧为甲丁己三角形之甲角度亦为丙丁己三角形之丙角度其乙戊弧为甲乙戊三角形之甲角度亦为丙乙戊三角形之丙角度即如冬夏至之大距为春秋分之角度葢甲丙为极则丁己乙戊为腰圈所谓大圈者是也
凡弧三角形之三弧不足九十度者必引长至九十度其对角之弧方为本角之度如甲乙丙弧三角形三弧皆不足九十度则将甲乙弧引长至丁甲丙弧引长至戊作丁戊弧其丁戊弧之度即甲角之度也又将乙甲弧引长至己乙丙弧引长至庚作己庚弧其己庚弧之度即乙角之度也又将丙甲弧引长至辛丙乙弧引长至壬作辛壬弧其辛壬弧之度即丙角之度也
凡弧三角形其角适足九十度者为直角为正弧三角形甲图是也大于九十度者为钝角不及九十度者为鋭角俱为斜弧三角形乙图丙图是也因三边皆弧故与直线三角形不同直线三角形有一直角或一钝角余二角必锐弧三角形则有一直角二锐角者如丁形有一直角二钝角者如戊形有一直角一钝角一锐角者如己形有二直角一锐角者如庚形有二直角一钝角者如辛形有三角俱直者如壬形有一钝角二锐角者如癸形有三角俱钝者如子形有一锐角二钝角者如丑形而弧三角之形势大概尽于此数端矣
弧三角形凡例
一直线三角形之三角相加成一百八十度弧三角形之三角相加最小者亦必大于一百八十度但不得满五百四十度【因其有三钝角每一钝角不得满一百八十度故三钝角不得满五百四十度】
一直线三角形知两角即知其所余一角弧三角形虽知两角其余一角非算不知
一直线三角形之边小则咫尺大则千百万里实有尺度之可量弧三角形之边俱系弧度必在半周一百八十度之内但合三边不得满三百六十度【葢三百六十度则成全圜而不得成角矣】
一直线三角形之八线惟用于角弧三角形之八线并用于边角之八线与边之八线相求仍以勾股为比例也
一直线三角形两形之三边各相等者为相等形两形之三角各相等者为同式形弧三角形则但有相等形而无同式形葢以两形之三角同其三边必各相同也
一直线三角形可以三边求角不可以三角求边而弧三角形既可以三边求角又可以三角求边
一弧三角形三角三弧共六件知三件可求其余理与直线三角形同
一正弧三角形除直角外二角三弧共五件知二件可求其余理与直线三角形同
一斜弧三角形作垂弧分为两正弧三角形与直线三角形作中垂线之理同
一弧三角形所知之三件有弧角相对者即用弧角为比例理与直线三角形同
一正弧三角形弧角不相对者则用次形法
一斜弧三角形知三边求角者用总较法知三角求边者先用次形法将角易为边边易为角然后用总较法
一斜弧三角形知两边一角而角在两边之间者用总较法或用垂弧法知两角一边而边在两角之间者先用次形法将角易为边边易为角然后用总较法或用垂弧法
正弧三角形论
正弧三角形必有一直角者葢因南北二极为赤道之枢纽皆距赤道九十度故凡过南北二极经圈与赤道相交所成之角俱为直角其相当之弧皆九十度又凡有一圈即有两极其过两极经圈与本圈相交亦必为直角其所成三角形必皆为正弧三角形夫正弧三角形所知之三件弧角相对者用弧角之八线所成勾股为比例而弧角不相对者则用次形盖以弧角之八线所成勾股比例不生于本形而生于次形而次形者乃以本形与象限相减之余度所成故用本形之余余切即用次形之正正切也其法可易弧为角易角为弧【若斜弧三角形可易大形为小形易大边为小边易钝角成锐角】边与角虽不相对可易为相对且知三角即可以求边其理实一以贯之也今以黄道赤道与过极经圈所成之三角形设例而正弧三角形比例推算之法无不统于是矣
正弧三角形图说【设黄赤大距二十三度三十分】
如甲乙丙丁为赤道甲戊
丙己为黄道相交于甲丙
甲为春分丙为秋分戊为
夏至己为冬至庚为北极
辛为南极庚戊乙辛己丁
为二极二至交圈戊至乙
己至丁俱二十三度三十
分为黄赤大距今作庚壬
癸辛为过南北二极经圈
与黄道交于壬与赤道交
于癸成甲癸壬正弧三角
形甲为黄道赤道交角当
戊乙弧二十三度三十分
癸为直角葢庚辛二极即
赤道之极皆距赤道九十
度故凡过南北极经圈与
赤道所成之角皆为直角
其相当之弧皆九十度又
如子丑为黄道两极若从
子丑二处作子寅卯丑过
黄极经圈与黄道交于卯
与赤道交于寅成甲寅卯
正弧三角形则卯亦为直
角葢子丑为黄道两极皆
距黄道九十度故凡过黄
极经圈与黄道所成之角
皆为直角其相当之弧皆
九十度由此推之凡有一
圈必有两极其过两极圈
与本圈相交必为直角其
所成三角形必皆为正弧
三角形可知矣
正弧三角形八线勾股比例图说【设黄道四十五度】
甲为黄道赤道交角甲乙
为黄道四十五度甲丙为
赤道同升度乙丙为黄赤
距度成甲乙丙正弧三角
形甲丁甲戊皆象限丁戊为
黄赤大距二十三度三十分
即甲角度己为北极庚为南
极己丁庚壬为二极二至交
圈甲为春分丁为夏至辛为
秋分壬为冬至癸为地心己
乙丙庚为过南北二极经圈
其甲乙丙三角形之八线各
成相当比例之勾股形丁子
为甲角之正弦子癸为甲角
之余丑戊为甲角之正切
丑癸为甲角之正割戊癸丁
癸皆为半径成丑戊癸及丁
子癸同式两勾股形乙寅为
乙丙距纬弧之正乙卯为
甲乙黄道弧之正将两正
之寅卯
二处作虚线聨之成乙寅
卯勾股形【两正之末立于各半径寅卯
二处而寅卯二处皆未抵于弧界故不得为正今
以虚线聨之者为眀勾股之理也】辰丙为
乙丙距纬弧之正切丙己
为甲丙赤道弧之正将
正切正之辰巳二处作
虚线聨之成辰丙巳勾股
形午甲为甲乙黄道弧之
正切未甲为甲丙赤道弧
之正切将两正切之午未
二处作虚线聨之成午未
甲勾股形此三勾股形与
前二勾股形皆为同式形
夫甲癸辛原系一线如将
甲癸辛平视之则甲癸辛
合成一防而辛癸卯己甲
五角皆合为一角甲戊象
限亦成一直线而戊癸半径
寅卯聨线丙己正未甲正
切亦皆合为一线矣赤道既
平置则黄道斜倚従辛视之
甲丁象限亦成一直线而丁
癸半径乙卯正辰巳聨线
午甲正切亦皆合为一线矣
夫五勾股形既同角而各股
皆合为赤道之一线各皆
合为黄道之一线则各勾必
皆与赤道径线相交成直角
而自将平行故皆为相当比
例之勾股形而可以互相比
例也正弧三角形用次形图
说如甲乙丙
形可易为乙己丁次形葢
甲戊甲丁己丙
己戊四弧皆象限九十度
于甲丁象限弧内减去甲
乙弧余乙丁弧即次形之
乙丁边于己丙象限弧内
减去乙丙弧余己乙弧即
次形之己乙边于己戊象
限弧内减去丁戊弧【即甲角度】余己丁弧即次形之己丁
边于甲戊象限弧内减去
甲丙弧余丙戊弧即次形
之己角度是次形之三边
一角即本形三边一角之
余度而用形之余余
切实即用次形之正正
切也次形之丁角为直
角与本形之丙角等乙为
交角其度又等故算乙己
丁形即得甲乙丙形也
又甲乙丙形可易为己庚辛
次形葢庚丁为象限弧与己
戊等则庚己与丁戊等故本
形【丁戊即甲角度】之甲角即次形
之庚己边乙辛壬庚乙壬皆
为象限弧与甲丁等则壬丁
即与甲乙等故本形之甲乙
边即次形之庚角乙壬与乙
辛既皆【庚壬与庚丁俱象限故壬丁弧为庚
角度】为象限则辛壬弧即乙角
之度故象限内减去乙角之
辛壬弧余即次形之庚辛边
丙戊弧即己角之度故于甲
戊象限弧内减去甲丙弧余
丙戊弧即次形之己角又次
形之辛角为直角与本形之
丙角等次形之丁戊即甲角
度庚壬与庚丁俱象限故壬
辛己边与本形之乙丙边等
故【辛乙与己丙等故辛己与乙丙等】算己
庚辛形亦得甲乙丙形也辛
乙
正弧三角形边角相求法
正弧三角形边角相求错综变换共三十则用黄赤交角所生八线勾股比例者九用黄道交极圏角所生八线勾股比例者亦九用次形者十二依题比类列目于前按法循序设问于后以便观览
有直角有黄赤交角有黄道求距纬【第一】
有直角有黄赤交角有黄道求赤道【并见第一】有直角有黄赤交角有黄道求黄道交极圏角【并见第一】
有直角有黄赤交角有赤道求距纬【第二】
有直角有黄赤交角有赤道求黄道【并见第二】有直角有黄赤交角有赤道求黄道交极圏角【并见第二】
有直角有黄赤交角有距纬求黄道【第三】
有直角有黄赤交角有距纬求赤道【并见第三】有直角有黄赤交角有距纬求黄道交极圏角【并见第三】
有直角有黄道有赤道求黄赤交角【第四】
有直角有黄道有赤道求距纬【道并见第】
有直角有黄道有赤道求黄道交极圏角【四并见第】有直角有黄道有距纬求黄赤交角【四第】
有直角有黄道有距纬求赤道【五并见第】
有直角有黄道有距纬求黄道交极圏角【五并见第】有直角有赤道有距纬求黄赤交角【五第】
有直角有赤道有距纬求黄道【六并见第】
有直角有赤道有距纬求黄道交极圏角【六并见第】有直角有黄道交极圏角有黄道求赤道【六与第一之理】
有直角有黄道交极圏角有黄道求距纬【同与第一之理】
有直角有黄道交极圏角有黄道求黄赤交角【同与第一之理】
有直角有黄道交极圏角有距纬求赤道【同与第二之理】
【同】有直角有黄道交极圏角有距纬求黄【与第二之理同】
有直角有黄道交极圏角有距纬求黄赤交角【与第二之理同】
有直角有黄道交极圏角有赤道求黄道【与第三之理同】
有直角有黄道交极圏角有赤道求距纬【与第三之理同】
有直角有黄道交极圏角有赤道求黄赤交角【与第三之理同】
有直角有黄赤交角有黄道交极圏角求黄道【第七】
有直角有黄赤交角有黄道交极圏角求赤道【并见第七】
有直角有黄赤交角有黄道交极圏角求距纬【并见第七】
设如黄赤交角二十三度三十分黄道弧四十五度求距纬度及赤道度并黄道交极圏角各防何【第一】
甲乙丙正弧三角形甲为
黄赤交角丙为直角甲乙
为黄道弧求乙丙距纬弧则
以丙直角为对所知之角其
正即半径一千万为一率