弧矢算术

  钦定四库全书     子部六
  弧矢筭术       天文算法类二【算书之属】提要
  【臣】等谨案弧矢算术一卷明顾应祥撰应祥有人代纪要巳着録弧矢之法始于元郭守敬授时厯草其有弧背求矢草立天元一为矢云云反覆求之至得三乘方积数及廉隅纵数而止不载开方筭式大抵开诸乗方法尚为当时畴人所习抑或别有専书皆不可知其矢相求及弧容直濶诸法皆以勾股法御之明唐顺之谓为步日躔月离源头作弧矢论以示顾应祥应祥遂演为是书名其编曰弧矢算术应祥未明立天元一法故置之不论惟补其开带纵三乗之式并详各矢相求之法与测圆海镜分类释术之作相同亦専备其数使学者可考而已乾隆四十六年二月恭校上
  总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅
  总 校 官 【臣】 陆 费 墀













  弧矢算术序
  弧矢一术古今算法所载者絶少钱唐呉信民九章法止载一条四元玉鉴所载数条皆不言其所以然之故沈存中梦溪笔谈有割圆之法虽自谓造微然止于径矢求而于弧背求矢截积求矢诸法俱未备予每病之南曹讼牒颇暇乃取诸家算书间附己意各立一法名曰弧矢算术藏诸箧笥俟高明之士取正焉未敢谓尽得其阃奥也嘉靖壬子春三月吉吴兴顾应祥识








  弧矢论说
  弧矢者割圆之法也割平圆之旁状若弧矢故谓之弧矢其背曲曰弧背其直曰弧其中衡曰矢而皆取法于径径也者平圆中心之径也背有曲直有脩短系于圆之大小圆大则径长圆小则径短非径无以定之故曰取则于径而其法不出于勾股开方之术以矢求则以半径为半径减矢为股股各自乗相减余为实平方开之得勾勾即半截也以求矢亦以半径为半截为勾勾各自乗相减余为实平方开之得股股乃半径减矢之余也以减半径即矢或以矢减全径为勾股和以矢为勾股较乘之亦得勾筭即半截筭也矢自乗圆径除之得半背差倍以加即弧背以半背差除矢筭亦得圆径半截自乗为实以矢除之得矢径差加矢即圆径以矢加以矢乗而半之即所截之积也倍截积以矢除之减矢即倍截积以为从方开之即矢惟弧背与径求矢截积与径求矢开方不能尽用三乗方法开之弧背求矢以半弧背筭与径筭相乗为实径乗径筭为从方径筭为上亷全背与径相乗为下亷约矢乗上亷以减从方以矢自乗以减下亷又以矢乗余下亷与减余从方为法除实得矢曷为以矢乗上防减从方也盖从方乃径与径筭相乗其中多一矢乗径筭之数故减之曷为又以矢自乗以减下亷也下亷乃背径相乗其中多一矢自乗之数故亦减之减之则法与实相合矣以截积求矢则倍积自乗为实四因积为上亷四因径为下亷五为负隅约矢以隅因之以减下亷又以矢一度乗上亷两度乗下亷并而为法矢减下亷者何也矢本减径而得故减径以求之五为负隅者何也凡以方为圆毎一寸得虚隅二分五厘四其虚隅与四其矢合而为五也四其亷者何也倍积则乗出之数为积者四故亦四其亷以就之升法以就实也若以截与截余外周求矢则以筭半筭相乗四而三之为实并及余周为益方半乗加筭为从上亷并亷及余周为下亷以约出之矢乗上亷又以矢自乗再乗为隅法并上亷以减益方矢自之以乗下亷并减余从方为法除实得矢













  方圆论说【附】
  世之习算者咸以方五斜七围三径一为凖殊不知方五则斜七有奇径一则围三有奇故古人立法有勾三股四五之论而不能使方斜为一定之法有割圆矢之论而不能使方圆为一定之法试以勾股法求之勾股各自乗并为实平方开之此施之于长直方则可若一整方勾五股五各自乗并得五十平方开之得七而又多一筭矣割圆之法求矢求固是至于求弧背则恐未尽也何以知之试以平圆径十寸者例之中心剖开矢阔五寸自乗得二十五寸以径除之得二寸五分为半背差倍之得五寸以加得一十五寸与围三径一之论正合然径一则围三有竒奇数则不能尽矣以是知弧背之説犹未尽也不特是也凡平圆一十二立圆三十六皆不过取其大较耳或曰宻率径七则围二十二徽率径五十则围一百五十七何不取二术酌之以立一定之法曰二术以圆为方以方为圆非不可但其还原与原数不合数多则散漫难收故算厯者止用径一围三亦势之不得已也曰厯家以径一围三立法则其数似犹未精然郭守敬之厯至今行之无弊何也曰厯家以万分为度秒以下皆不録纵有小差不出于一度之中况所谓黄赤道弧背度乃测验而得止以径一围三定其平差立差耳虽然行之日久安保其不差也窃尝思之天地之道隂阳而已方圆天地也方象法地静而有质故可以象数求之圆象法天动而无形故不可以象数求之方体本静而中斜者乃动而生阳者也圆体本动而中心之径乃静而根隂者也天外阳而内隂地外隂而内阳隂阳交错而万物化生其机正在于奇零不齐之处上智不能测巧厯不能尽者也向使天地之道俱可以限量求之则化机有尽而不能生万物矣余因论方圆之法而并着其理如此


  钦定四库全书
  弧矢筭术       明 顾应祥 撰
  圆径与截矢求截
  术曰半径为半径减矢为股各自乗相减余为勾筭平方开之得勾即半截
  又曰以矢减径以矢乗之即半截筭
  圆径十寸从旁截一弧矢阔一寸问截
  答曰六寸
  术曰半径自之得二十五 半径减矢自之得一十六寸相减余九平方开之得三倍之即截
  又曰圆径自之得一百为筭圆径减倍矢自之得六十四为股筭相减余三十六为勾筭平方开之得全
  圆径十三步截矢阔四歩问截
  答曰十二歩
  术曰半径筭四十二步【二五】减矢半径筭六歩【二五】相减余三十六歩为勾筭
  又曰全径筭一百六十九 减倍矢径筭二十五相减余一百四十四平方开之得全截
  圆径九十歩截矢九歩问截
  答曰五十四步
  术同
  圆材径二尺五寸锯板欲厚七寸问阔几何
  答曰板阔二尺四寸
  术曰圆径为自之得六十二尺五寸 板厚为勾自之得四尺九寸相减得五十七尺六寸为股筭平方开之













  【阙】







<子部,天文算法类,算书之属,弧矢算术,弧矢算术>
<子部,天文算法类,算书之属,弧矢算术,弧矢算术>

  商得
  一寸 置一于左上为法 置一乗上亷仍得一十四寸 置一隅因得五以减下亷余三十五寸 置一自之以乗下亷仍得三十五寸并上亷得四十九为下法
  圆径九十歩从旁截积二百八十三歩半问截矢答曰矢九歩
  术曰倍积自之得三十二万一千四百八十九歩为正实 四因积得一千一百三十四为上亷 四因径得三百六十为下亷 五为负隅 商得九 置一于左上为法 置一乗上亷得一万○二百○六置一隅因得四十五以减下亷余三百一十五 置一自之以乗余下亷得二万五千五百一十五并上亷共二万五千七百二十一为下法
  圆径九十歩从旁截积八百一十歩问矢
  荅曰矢一十八歩
  术曰倍积自之得二百六十二万四千四百爲正实四因截积得三千二百四十为从上亷 四因圆
  径得三百六十为从下亷 五爲负隅 初商一十置一于左上为法 置一乗上亷得三万二千四
  百 置一以隅因之得五十以减从下亷余三百一十 置一自之以乗余下亷得三万一千 并上亷共六万三千四百为下法与上法相乗除实六十三万四千 余实一百九十九万○四百未尽 倍上亷得六万四千八百初商自之三因得三百为下亷方法 初商三之得三十为下亷亷法 初商自乗再乗隅因得五千为下亷减隅 次商八 置一于左上为法 置一乗上亷得二万五千九百二十并倍上亷共九万○七百二十 置一并入初商得一十八以隅因之得九十以减从下亷余二百七十以方法乗之得八万一千 置一乗亷法得二百四十以乗余下亷得六万四千八百 置一自之得六十四以乗余下亷得一万七千二百八十减去减隅五千止存一万二千二百八十 下亷方亷隅共一十五万八千○八十并上亷共二十四万八千八百为下法与上法相乗除实尽
  又术次商八 置一于左上为法 倍初商加次商得二十八以乗上亷得九万○七百二十 置一隅因得四十以减余下亷止存二百七十倍初商加次商并初次商因之得五百○四加初商自之一百共六百○四以乗二百七十得一十六万三千○八十以初商自乗再乗隅因得五千减之止存一十五
  万八千○八十并上亷共二十四万八千八百为下法
  又为添积开三乗方法
  术曰倍积自之得二百六十二万四千四百为正实四因截积得三千二百四十为上亷 四因圆径
  得三百六十为下亷 五为负隅
  初商一十 置一于左上为法 置一自之又自之得一万为三乗方面以隅因之得五万为益实加入正实得二百六十七万四千四百为通实 置一乗上亷得三万二千四百 置一自之以乗下亷得三万六千并上亷共六万八千四百为下法与上法相乗除实六十八万四千 余实一百九十九万○四百未尽为次商正实
  次商八 置一于左上为法 置一加初商自之又自之得一十○万四千九百七十六为三乗方面以隅法因之得五十二万四千八百八十内减初益实五万余四十七万四千八百八十为益实加入次正实共二百四十六万五千二百八十为通实 倍初商加次商得二十八以乗上亷得九万○七百二十倍初商加次商得二十八并初次商一十八相因
  加初商自乗共六百○四以乗下亷得二十一万七千四百四十 并上亷共三十○万八千一百六十与上法相乗除实尽
  圆径八十九歩从旁截积一千三百一十二歩半问截矢
  答曰矢二十五歩
  不用倍积术曰积自之得一百七十二万二千六百五十六歩【二五】 截积一千三百一十二歩半为上亷径八十九歩为下亷以一歩二分五厘为负隅初商二十 置一于左上为法 置一乗上亷得二万六千二百五十 置一以隅因之得二十五以减下亷余六十四 置一自之以乗余下亷得二万五千六百并上亷得五万一千八百五十为下法与上法相乗除实一百○三万七千 余实六十八万五千六百五十六歩二五未尽
  次商五 置一于左上为法 置一以隅因之得六歩二分五厘以减余下亷余五十七歩七分五厘倍初商加次商得四十五以乗上亷得五万九千
  ○六十二半 倍初商加次商并初次商因之得一千一百二十五加初商自之四百共一千五百二十五以乗余下亷得八万八千○六十八歩七五 内减初商自乗再乗隅因一万 止存七万八千○六十八歩七五并上亷共一十三万七千一百三十一歩二五 与上法相乗除实尽
  解曰弧矢状类勾股勾股得直方之半故倍其积以股除之即得勾弧背曲倍积则长一而又一矢以矢乗积倍之恰得一一矢之数因未知矢故以积自乗为实约矢一度乗积以为上亷两度乗径以为下亷并之为法而后可以得矢用三乗者何也积本平方以积乗积是两度平方矣故用三乗方法开之上亷下亷俱用四因者何也倍积则乗出之数为积者四故上下亷俱四以就之减径者何也径乃圆之全径矢乃截处之勾矢本减径而得故亦减径以求矢五为负隅者何也凡平圆之积得平方四之三在内者七五在外者二五不拘圆之大小毎方一尺该虚隅二寸五分四其矢得四四其虚隅得一合而为五亦升实就法之意如不倍积亷不用四因以一二五为隅法亦通 或不减径作添积三乗方法亦通



















  圆径与截积求截
  术曰倍积以矢除之减矢即
  又法用矢径求术
  圆径八十九歩从旁截积一千三百一十二歩半问截
  答曰八十歩
  术曰倍积得二千六百二十五歩以求出矢二十五除之得一百○五歩乃一一矢减矢即
  又曰倍矢减径余三十九自之得一千五百二十一为勾筭全径自之得七千九百二十一为筭相减余六千四百为股筭平方开之
  若求弧背以径除矢筭即半背差
  圆径与弧背求矢
  术曰半弧筭径筭相乗为实径乗径筭为从方径筭为上亷径背相乗为下亷以上亷减从以隅减下亷三乗方法开之
  平圆径十尺从旁截处弧背八尺八寸问矢
  答曰矢二尺
  术曰半弧背自之得一十九尺三寸六分 径自之得一百尺 相乗得一千九百三十六尺为正实径乗径筭得一千尺为从方 径筭一百尺为上亷全背乗径得八十八尺为下亷
  约商二尺 置一于左上为法 置一乗上亷得二百尺以减从方余八百尺 置一自之得四以减下亷余八十四尺 又以二乗余下亷得一百六十八尺 并从方共九百六十八尺为下法
  又术商矢减径存八尺以矢乗之得十六平方开之即得半
  平圆径九十歩旁截边弧背五十五歩八分问矢答曰九歩
  术曰半背筭七百七十八歩四一 径筭八千一百二筭相乗得六百三十○万五千一百二十一为正实 径乗径筭得七十二万九千为从方 径筭八千一百为上亷 径背相乗得五千○二十二为下亷如前法求之
  平圆径九十歩旁截弧背七十九歩二分问矢
  答曰矢一十八歩
  术曰半弧筭一千五百六十八歩一六 径筭八千一百 二筭相乗得一千二百七十○万二千○九十六为正实 径乗径筭得七十二万九千为益从方 径筭八千一百为上亷 径背相乗得七千一百二十八为下亷
  初商一十 置一于左上为法 置一乗上亷得八万一千以减从方余六十四万八千 置一自之得一百以减下亷余七千○二十八 置一乗余下亷得七万○二百八十并减余从方共七十一万八千二百八十为下法与上法相乗除实七百一十八万二千八百余实五百五十一万九千二百九十六未尽
  次商八 置一于左次为上法 倍初商加次商得二十八以乗上亷得二十二万六千八百以减益从方余五十○万二千二百为从方 并初次商得一十八自之得三百二十四加初商自之一百为四百二十四以减下亷余六千七百○四 倍初商加次商得二十八因之得一十八万七千七百一十二并入从方共六十八万九千九百一十二为下法与上法相乗除实尽