- 首页
- 儒藏
- 乐经
- 律吕阐微
律吕阐微
钦定四库全书 经部九
律吕阐防 乐类
提要
【臣】等谨按律吕阐防十卷
国朝江永撰是书引
圣祖仁皇帝论乐五条为
皇言定声一卷冠全书之首而
御制律吕正义五卷永实未之见故于西人五线六名八形号三迟速多不能解其作书大防则以明郑世子载堉为宗惟方圆周径用密率起算则与之防异载堉之书后人多未得其意或妄加评隲今考载堉命黄钟为一尺者假一尺以起勾股开方之率非于九寸之管有所益也其言黄钟之律长九寸縦黍为分之九寸也寸皆九寸凡八十一分是为律本黄钟之数长十寸横黍为分之十寸也寸皆十分凡百分是为度母縦黍之律横黍之度名数虽异分剂实同语最明晰而昧者犹执九寸以辨之不亦惑乎考工记防氏为量内方尺而圆其外则圆径与方斜同数方求斜术与等边勾股形求等今命内方一尺为黄钟之长则勾股皆为一尺各自乘并之开方得为内方之斜即外圆之径亦即防宾倍律之率盖方圆相函之理方之内圆必得外圆之半其外圆必得内圆之倍圆之内方亦必得外方之半其外方亦必得内方之倍今圆内方边一尺其幂一百外方边二尺其幂四百若以内方边一尺求斜则必置一尺自乘而倍之以开方是方斜之幂二百得内方之倍外方之半矣防宾倍律之幂得黄钟正律之倍倍律之半是以圆内方为黄钟正律之率外方为黄钟倍律之率则方斜即防宾倍律之率也于是以勾乘之开平方得南吕倍律之率以勾股再乘之开立方得应钟倍律之率既得应钟则各律皆以黄钟正数十寸乘之为实以应钟倍数为法除之即得其次律矣其以勾股乘除开方所得之律较旧律仅差毫厘而稍赢而左左相生可以解往而不返之疑且十二律周径不同而半黄钟与正黄钟相应亦可以解同径之黄钟不与半黄钟应而与半太蔟应之疑永于载堉之书疏通证明具有条理而以防宾倍律之生夹钟一法又能补原书所未备惟其于开平方得南吕之法知以四率比例解之而开立方得应钟法则未能得其立法之根而畅言之盖连比例四率之理一率自乘用四率乘之与二率自乘再乘之数等今以黄正为首率应倍为二率无倍为三率南倍为四率则黄正自乘又以南倍乘之开立方即得二率为应钟倍律之率也其实载堉之意欲使仲吕返生黄钟故以黄正为首率黄倍为末率依十二律长短之次列十三率则应钟为二率南吕为四率防宾为七率也其乘除开平方立方等术皆连比例相求之理而特以方圆勾股之説隠其立法之根故永有所不觉耳乾隆四十六年十月恭校上
总纂官【臣】纪昀【臣】陆锡熊【臣】孙士毅
总 校 官【臣】陆 费 墀
钦定四库全书
律吕阐微卷首
婺源 江永 撰
皇言定声
圣祖仁皇帝论乐五条见大学士安溪李文贞公光地奏劄述举人魏廷珍王兰生梅防成奉
防学律其受
圣诲如此【臣】江【水】稽首顿首谨释
圣谕曰言乐者必以黄钟为本黄钟者天地之中声也天地之声寄于人而人之喉自最低至最髙不过十余声而止古今讴吟歌曲之音不絶而笙管琴笛之类即与之相应所谓中声者自寓乎人声乐器之间但人习而不察则以为微妙难知耳
【臣】谨按天地之间形气相轧而有声大若雷霆细至蠛蠓无非声也而过大者已震过小者已靡皆不可以为乐其能为乐者皆天地之中声而黄钟之宫又为中之中其为商角徴羽皆黄钟一音之流行而正宫调必以最中者为黄钟也
圣训以黄钟为天地之中声此一言者已为声律提挈纲领矣天地之声寄于人人者天地之心也人声出于喉掉于舌触击于牙齿唇以成种种之音喉之居中犹管之中空也而喉通于肺根于肾肺气出丹田厯气海抗喉而歌引气而上以成清浊高下之声太下者声咽不出太髙者声掲不起最下至最髙不过十余声在律则防賔林钟之倍至姑洗仲吕之半在乐家管色板眼字则为大尺至小五而黄钟之宫则在清浊髙下之间者也人能为讴吟歌曲之音而笙管琴笛之类即与之相应所谓同声相应者也人声乐器皆有天地之中声能习熟而精审之未始不可知程子云黄钟之声亦不难定世自有知音者将上下声考之是也岂真微妙难知哉然黄钟中声虽若不难知顾自汉晋至前眀厯代造律造乐者或用尺过短则乐声太髙以夹钟为黄钟而不知或用尺过长则乐声太低以无射倍律为黄钟而不知岂果音之难知与抑各有所蔽与大约自后周王朴乐已前病其髙蔽于金石遗器也自宋范镇魏汉津已后乐又病其低蔽于宫声最大之说也明人著书有谓人声最低者为黄钟果若是则黄钟之声倚于一偏何得为中声乎后之学律者宜绎
圣训天地中声之一言而以程子将上下声考之之语
为求中声之要其庶几乎
圣谕又曰论乐莫要于审音审音莫难于半音盖相去全音辨之易相去半音辨之难能辨半音则全音不难知矣
【臣】谨按论乐莫要于审音此亦至言也古之神瞽考中声而量之以制度律均钟实能以耳齐其声后人不能徒求之金石秬黍者徇末而遗本又或求之候气飞灰则尤茫而难凭惟精于审音乃为能知乐耳能辨半音则全音不难知此
圣训示人以审音之方也伶伦造律先为半黄钟以为律本此善审半音者也今试以管求之一孔而有低声髙声髙者半而低者全也一而有散声中徽中徽半而散声全也以此习熟于耳亦庶几可辨
圣谕又曰声之应于者以短长为差故倍半之声得以相应至于管音既分长短又分粗细必用积实加减八倍之法而后相应盖线与线体与体之比例各异也
【臣】谨按长短者线也粗细者体也琴瑟之亦有粗细以为声之大小就一中粗细既定则惟以长短为倍半之差若管音既分长短又分粗细必用积实加减八倍之法而后相应者何也凡径线加一倍平方面幂加四倍立方面幂加八倍如径十者自乘百又以十乘之一千为体积若倍径二十则自乘四百以二十乘之体积八千是加八倍须减八之一为一千乃与径十之体积相应又径十半之为五自乘二十五以五乘之体积一百二十五于一千体积仅得八之一须加八倍乃与径十之体积相应也立方之体积如此则圆体之幂积与长短之加减数不同而理一故造律管者既制定黄钟自大吕而下须如法渐杀其围径使黄钟积实减半为防賔防賔积实减半为黄钟半律则黄钟半律积实得全律四分之一乃为真半律而防賔及诸律声数亦得其真倘律管围径皆同惟以长短为差则乖其自然之数非其本律之声矣
圣祖万几之暇精于三角八线勾股比例诸法故能推阐及此从来造律管者皆昧此理大吕以下空围悉如黄钟毋亦格物穷理之禾至乎
圣谕又曰古人论乐言髙下必言疾徐有髙下而无疾徐非乐也故西人有五线六名以辨髙下有八形号三迟速以别疾徐其说深为可取
【臣】谨按儒家论乐但能言其髙下而不知其疾徐子语太师翕如纯如皦如绎如其中必有疾徐焉师乙论歌上如抗下如坠曲如折止如槀木倨中矩句中钩累累乎端如贯珠其中必有疾徐焉书曰歌永言声依永歌不能永言非歌也一于永而无当疾当徐之节亦非歌也教坊度曲有点画以记板眼后人撰歌谱者但能纪髙下不能别疾徐
圣训所以深有取于西人之说五线六名等【臣】未见其
书不敢妄释
圣谕又曰宫声君也宜居中位征羽宜有浊声在宫声之前其清声则在商角之后与浊声相应
【臣】谨按五声之序宫商角徴羽众所共知管子地员篇先言听徴听羽而后听宫听商听角非故违其序也声律之理论其体则以律长而声浊者为宫论其用则宫前有低声宫后有髙声而黄钟则在清浊之间管子又言黄钟小素之首上生徴徴下生商商上生羽羽下生角故徴羽在前商角在后而宫居中此真至之理吕不韦述黄帝命伶伦造律先断竹为黄钟之宫以为律本黄钟之宫者半律也吕氏所谓清浊之衷月令中央土之月中之其言十二律相生黄大太夹姑仲蕤七律上生林夷南无应五律下生犹管子之法皆宫声居中之理也伶州鸠言大不逾宫细不过羽夫宫音之主也第以及羽此惟就其体言之耳汉以后言律者虽谓黄钟下生林钟然司马迁犹有上九商八羽七角六宫五徴九之云则宫固居五之中位矣淮南子以十二律配时甲子为仲吕之徴丙子为夹钟之羽戊子为黄钟之宫庚子为无射之商壬子为夷则之角则徴羽宫商角正如管子之序矣蔡邕十二笛蕤賔最长仲吕最短每一笛正声应本律下徴应所生之律所谓下徴者徴下于宫正徴声居前之理也其法传至隋乐工犹守其法故当时乐府所奏林钟之宫以林钟当黄钟南吕当太蔟应钟当姑洗正得古人用律之法有郑译者不知而妄议竟易其旋宫之法于是误以最大者为黄钟而黄钟之宫遂不得居中位矣自是以来学士大夫或制律造乐或著书立言无不以宫声为最大者是知体而不知用也是徒知最长者之为尊不知居中者之尤为尊也自宋以来乃有乐忌陵犯之说古人无此议论夫谓尊卑有序不可相陵其说岂不近理殊不知乐律之理正不如此幸而琴家命调犹以三为宫者为宫调为正调笙家制簧以最长之簧为林尺之声民间之笛犹有以开第三孔为宫声应合字者即词曲家之四声二十八调借平上去入以为四声之序亦不以平为宫而以去为宫则宫声居中之理未尝不存于声器之间顾乐工能知而学士大夫反昧之是未深究古籍之言徒袭流俗相传之说欲尊君而未知所以尊也
圣祖位居九五不曰宫声君也宜居首而曰宜居中不曰徴羽商角不可上陵而曰徴羽宜有浊声在宫声之前此正得黄帝造律以黄钟之宫为律本之意亦肳合管吕诸家之正论而凡雅乐俗乐声律自然之理皆包络其中矣今之琴不知者曰宫商角徴羽少宫少商其知者曰征羽宫商角少徴少羽所谓其清声在商角之后与浊声相应者六七少徴少羽之谓也
圣祖此条千万世论乐者皆当奉为定论自汉以后凡言宫声律最长乐家忌陵犯皆以此言断其未确可也声律所以有体有用其理极防妙本具河图之中后再明之
右
圣祖论乐五条理闗至极臣庶未易得闻者雍正庚戌交河王公兰生为学政视学徽郡试竣后召【臣】至署纵言至于乐谓【臣】曰琴大小皆十三徽笙簧或不合律用蜡点之声已上则摩其旁已下则摩其端皆有至理生岂知之乎【臣】对曰畧闻之又曰琴大是徴声生亦知之乎【臣】闻之然对曰生向读朱子琴律说大是宫声何故是徴声生敢请其说王公曰试思之既退属思竟不可晓后十年反复管吕之书乃恍然悟宫声居中大是徴后又读文贞公奏劄乃知王公论琴得之亲侍燕闲
圣训指授非公创为此说也既自幸草莽愚生获闻至论因以管蠡之见妄为窥测撰律吕新义数卷谨以圣谕五条题为
皇言定声恭载书首今易新义为阐微仍加诠释读者
当细绎焉【臣】又考
大清防典
圣祖御制有律吕正义五卷当更有精微之论发千古所未发者尚俟访求而伏读之以开愚蒙焉
律吕阐微卷首
钦定四库全书
律吕阐微卷一
婺源 江永 撰
律尺
造律以定尺为先前汉律厯志度本起黄钟之长以子谷秬黍中者一黍之广度之九十分黄钟之长一为一分十分为寸十寸为尺是谓黄钟之长九寸外加一寸为尺明何瑭辨之曰度量权衡所以取法于黄钟者贵其与天地之气相应也若加一寸以为尺则又何取于黄钟殊不知黄钟之长固非人所能为至于九其寸而为律十其寸而为尺则人之所为也汉志不知出此乃欲加黄钟一寸为尺谬矣【见何瑭律吕管见何瑭者朱载堉之祖舅也】按此说发前人所未发使当时横累百黍为百分以为黄钟之长十分之为尺九分之为律则黄钟中度矣乃以横黍九十为黄钟九寸则短于黄钟者十分之一律短则乐声髙不但误当时且误后世此刘歆之妄作也
明郑世子朱载堉着律吕精义曰臣尝闻朱子曰律吕汉书所载甚详然不得其要史记所载甚畧却是要处如说律数盖自然之理与先天图一般更无安排初闻此语不晓其义及闻何瑭之説如此方悟汉志度本起于黄钟之长则黄钟之长即是一尺古云长九寸长八寸十分一之类尺一而律同也朱子所谓与先天图一般者夫先天图出于河图洛书者也洛书之数九故黄钟之律长九寸因而九之得八十一分与纵黍之长相合河图之数十故黄钟之度长十寸因而十之得百分与横黍之广相合盖河图之偶洛书之竒参伍错综而律度二数方备此乃天地自然之妙非由人力安排者也不幸为刘歆班固所乱自汉至今千数百年造律不成盖由律度二尺纵横二黍无分别耳何氏此论发千载之秘破万古之惑律学最要处其在斯与此前代诸儒之所未发者也
又曰律由声制非由度出制律之初未有度也度尚未有何以知黄钟乃九寸哉以黄钟为九寸不过汉尺之九寸耳周尺则不然也商尺又不然也虞夏之尺皆不然也黄帝之尺又不然也【先儒谓夏禹十寸为尺成汤十二寸为尺武王八寸为尺三代之尺不同尺虽不同而黄钟则无不同也】盖黄帝之尺以黄钟之长为八十一分者法洛书阳数也【黄帝时洛出书见沈约符瑞志洛书数九自乘得八十一是为阳数】虞夏之尺皆以黄钟之长为十寸者法河图中数也【书称舜同律度量衡尧舜禹相禅未尝改制然则禹以十寸为尺即舜所同之度尺也】
又曰黄钟之律长九寸纵黍为分之九寸也寸皆九分凡八十一分洛书之竒自相乘之数也是为律本黄钟之度长十寸横黍为分之十寸也寸皆十分凡百分河图之偶自相乘之数也是为度母纵黍之律横黍之度名数虽异分剂实同孰使之然哉天地自然之理耳按律尺有二法推本于河图洛书此亦前代诸儒所未发者也然而图书之妙不止于此一切声律数理用律法度及干支纳音无一不出其中后详言之又按律尺实有三法黄钟九寸一寸分作十分此法黄帝时已有之载堉谓始于京房者非也辨见后
又曰成汤以夏尺之十二寸有半寸为尺则黄钟之长乃商尺之八寸武王以夏尺之八寸为尺则黄钟之长乃周尺之十二寸有半寸黄钟无所改而尺有不同彼执着九寸为黄钟之律然则商之黄钟太长周之黄钟太短岂不谬哉